The archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers.

نویسندگان

  • M Tomschik
  • M A Karymov
  • J Zlatanova
  • S H Leuba
چکیده

BACKGROUND The discovery of histone-like proteins in Archaea urged studies into the possible organization of archaeal genomes in chromatin. Despite recent advances, a variety of structural questions remain unanswered. RESULTS We have used the atomic force microscope (AFM) with traditional nuclease digestion assays to compare the structure of nucleoprotein complexes reconstituted from tandemly repeated eukaryal nucleosome-positioning sequences and histone octamers, H3/H4 tetramers, and the histone-fold archaeal protein HMf. The data unequivocally show that HMf reconstitutes are indeed organized as chromatin fibers, morphologically indistinguishable from their eukaryal counterparts. The nuclease digestion patterns revealed a clear pattern of protection at regular intervals, again similar to the patterns observed with eukaryal chromatin fibers. In addition, we studied HMf reconstitutes on mononucleosome-sized DNA fragments and observed a great degree of similarity in the internal organization of these particles and those organized by H3/H4 tetramers. A difference in stability was observed at the level of mono-, di-, and triparticles between the HMf particles and canonical octamer-containing nucleosomes. CONCLUSIONS The in vitro reconstituted HMf-nucleoprotein complexes can be considered as bona fide chromatin structures. The differences in stability at the monoparticle level should be due to structural differences between HMf and core histone H3/H4 tetramers, i.e., to the complete absence in HMf of histone tails beyond the histone fold. We speculate that the existence of core histone tails in eukaryotes may provide a greater stability to nucleosomal particles and also provide the additional ability of chromatin structure to regulate DNA function in eukaryotic cells by posttranslational histone tail modifications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Histone Database: an integrated resource for histones and histone fold-containing proteins

Eukaryotic chromatin is composed of DNA and protein components-core histones-that act to compactly pack the DNA into nucleosomes, the fundamental building blocks of chromatin. These nucleosomes are connected to adjacent nucleosomes by linker histones. Nucleosomes are highly dynamic and, through various core histone post-translational modifications and incorporation of diverse histone variants, ...

متن کامل

Transcription by an archaeal RNA polymerase is slowed but not blocked by an archaeal nucleosome.

Archaeal RNA polymerases (RNAPs) are closely related to eukaryotic RNAPs, and in Euryarchaea, genomic DNA is wrapped and compacted by histones into archaeal nucleosomes. In eukaryotes, transcription of DNA bound into nucleosomes is facilitated by histone tail modifications and chromatin remodeling complexes, but archaeal histones do not have histone tails and archaeal genome sequences provide n...

متن کامل

Structure of Alba: an archaeal chromatin protein modulated by acetylation.

Eukaryotic DNA is packaged into nucleosomes that regulate the accessibility of the genome to replication, transcription and repair factors. Chromatin accessibility is controlled by histone modifications including acetylation and methylation. Archaea possess eukary otic-like machineries for DNA replication, transcription and information processing. The conserved archaeal DNA binding protein Alba...

متن کامل

The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3.

The histone variant H3.3 marks active chromatin by replacing the conventional histone H3.1. In this study, we investigate the detailed mechanism of H3.3 replication-independent deposition. We found that the death domain-associated protein DAXX and the chromatin remodeling factor ATRX (alpha-thalassemia/mental retardation syndrome protein) are specifically associated with the H3.3 deposition mac...

متن کامل

Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense

Transcriptional gene silencing (TGS) can serve as an innate immunity against invading DNA viruses throughout Eukaryotes. Geminivirus code for TrAP protein to suppress the TGS pathway. Here, we identified an Arabidopsis H3K9me2 histone methyltransferase, Su(var)3-9 homolog 4/Kryptonite (SUVH4/KYP), as a bona fide cellular target of TrAP. TrAP interacts with the catalytic domain of KYP and inhibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 9 12  شماره 

صفحات  -

تاریخ انتشار 2001